로지스틱 회귀1 머신 러닝 로지스틱 회귀(Logistic Regrssion)#1 - 로지스틱 회귀란? 머신러닝 지도학습(회귀, 분류) | 비지도 학습 회귀(연속적인 값 예측), 분류(정해진 몇 개의 값 중 예측) -> 로지스틱 회귀는 분류! ex) 해당 메일이 정상 메일인지, 스팸 메일인지 ex) 기사가 스포츠기사인지 정치기사인지 연예기사인지 -> 선형회귀로도 분류 학습을 할 수 있지만, 선형 회귀의 경우 예외적인 데이터에 민감하게 반응하기에 잘 사용하지는 않는다. -> 데이터에 가장 잘 맞는 1차 함수를 찾는다. = 선형 회귀 -> 데이터에 가장 잘 맞는 시그모이드 함수를 찾는다. = 로지스틱 회귀 무조건 0과 1사이 값을 리턴한다. X가 엄청나게 크면 1에 가까워지고 X가 엄청나게 작으면 0에 가까워진다. 따라서 시그모이드 함수는 무조건 0과 1사이 값을 리턴한다. -> 선형 회귀(1차 함수)의 경우.. 2021. 2. 8. 이전 1 다음 728x90 반응형